Функции и замыкание

Функции

Пространства имён: повторение

Про рекурсию

Замыкание

Замыкание_(программирование)

  1. Функция — это объект
  2. Её можно изготовить внутри другой функции и вернуть
  3. …причём в зависимости от параметров этой другой функции!
  4. …в процессе чего некоторые объекты из ПИ создающей функции «залипают» в ПИ создаваемой
    • только они там навсегда должны залипнуть, а не только на время вызова
    • .__closure__

  5. Это и есть замыкание!

Пример:

   1 def f1(x):
   2     def f2():
   3         return x
   4     return f2

pythontutor this

и

   1 def f1(x):
   2     def f2():
   3         def f3():
   4             return x
   5         return f3
   6     return f2

pythontutor this

Also: nonlocal name — явное указание брать имя name из внешнего, но не глобального пространства имён

Примеры: 1 и 2

Замыкание и позднее связывание

Вот этот код не работает так, как может показаться:

   1 def create_adders():
   2     adders = []
   3     for i in range(10):
   4         def adder(x):
   5             return i + x
   6         adders.append(adder)
   7     return adders
   8 
   9 for adder in create_adders():
  10     print(adder(1))

Обратите внимание на то, что все adder-ы работают одинаково!. Поскольку i для сгенерированных функций нелокальное, оно попадает в замыкание, и это один и тот же объект во всех adder-ах:

>>> c = create_adders()
>>> c[1]
<function create_adders.<locals>.adder at 0x7f272d2f93b0>
>>> c[1].__closure__
(<cell at 0x7f272d1c1510: int object at 0x7f272db36660>,)
>>> c[2].__closure__
(<cell at 0x7f272d1c1510: int object at 0x7f272db36660>,)
>>> c[2].__closure__[0].cell_contents
9
>>> c[1].__closure__[0].cell_contents
9

Если мы хотели не этого, надо сделать так, чтобы при создании очередного adder-а его i именовало новый объект:

   1 def create_adders():
   2     adders = []
   3     for i in range(10):
   4         def adder(x, j=i):
   5             return j + x
   6         adders.append(adder)
   7     return adders

При этом никакого замыкания не произойдёт, у каждого adder-а будет своё локальное j, инициализированное соответствующим значением i. (Если бы нам нужно было сильнее запутаться, мы могли бы написать i=i вместо j=i ☺ ).

   1 >>> c = create_adders()
   2 >>> c[1].__closure__
   3 >>> print(c[1].__closure__)
   4 None

Д/З

  1. Прочитать:
  2. EJudge: FourSquares 'Четыре квадрата'

    Известно, что любое натуральное число можно представить в виде суммы не более чем четырех квадратов неотрицательных целых чисел (теорема Лагранжа). Ввести натуральное N⩽100000 и найти для него такие целые неотрицательные x,y,z и t, чтобы x²+y²+z²+t²=N. Вывести все такие четвёрки в следующем формате: x,y,z и t — через пробел, и упорядочены по убыванию, а сами четвёрки — лексикографически по возрастанию (без повторений).

    Input:

    100
    Output:

    5 5 5 5
    7 5 5 1
    7 7 1 1
    8 4 4 2
    8 6 0 0
    9 3 3 1
    10 0 0 0
  3. (задача типа «написать функцию»)

    EJudge: Without2Zeros 'Без двух нулей'

    Написать функцию No_2Zero(N, K), которая вычисляет количество N-значных чисел в системе счисления с основанием K, таких что их запись не содержит двух подряд идущих нулей. Лидирующие нули не допускаются. Для EJudge N⩽33.

    Input:

    print(No_2Zero(6, 3))
    Output:

    328
  4. (задача типа «написать функцию»)

    EJudge: ArithFunct 'Арифметика функций'

    Написать четыре функции (функционала): ADD(f, g), SUB(f, g), MUL(f, g) и DIV(f, g), параметрами которых могут быть как обычные объекты, так и функции от одной переменной (проверить, является ли объект функцией можно с помощью callable(объект)). Возвращать эти функционалы должны функцию от одной переменнойh(x), которая выполняет соответствующее действие (f(x)+g(x), f(x)-g(x), f(x)*g(x) и f(x)/g(x)) над этими переменными. Если f или g не были функцией, вместо f(x) используется f, а вместо g(x)g (например, при умножении функции на константу).

    Input:

    from math import *
    
    f = SUB(sin, cos)
    print(f(12), sin(12)-cos(12))
    
    g = DIV(sin, cos)
    print(g(pi/6), tan(pi/6))
    
    h = MUL(exp, 0.1)
    print(h(2), e**2/10)
    
    t = ADD(len, sum)
    print(t(range(5)))
    Output:

    -1.380426876732927 -1.380426876732927
    0.5773502691896256 0.5773502691896257
    0.7389056098930651 0.738905609893065
    15

LecturesCMC/PythonIntro2020/04_FunctionsClosure (last edited 2020-10-06 09:28:46 by FrBrGeorge)