Различия между версиями 25 и 69 (по 44 версиям)
Версия 25 от 2008-07-04 17:58:56
Размер: 25237
Комментарий:
Версия 69 от 2008-10-04 10:24:12
Размер: 26505
Редактор: VsevolodKrishchenko
Комментарий:
Удаления помечены так. Добавления помечены так.
Строка 3: Строка 3:
'' Cпасибо VladimirLysikov за вступление ''-- ОльгаТочилкина === Задачи сетевого уровня ===
Строка 5: Строка 5:
С развитием концепции глобальной сети в уровень были внесены дополнительные возможности по передаче из любой сети в любую сеть, независимо от протоколов нижнего уровня, а также возможность запрашивать данные от удалённой стороны
Задачей протокола IP является передача данных между устройствами, которые, вообще говоря, не находятся в одной среде передачи данных. Для этого необходимо определить, во-первых, механизм адресации, чтобы можно было выделить среди множества компьютеров тот, которому предназначены данные, и, во-вторых, механизм маршрутизации, позволяющий доставку пакетов между различными сетями. Рассмотрим подробнее каждую из этих двух функций протокола IP.
Организация передачи данных на сетевом уровень предполагает, что компьютеры соединены между собой несколькими средами передачи данных, вообще говоря, совершенно различными. На этом уровне нужно решить две задачи:
 1. Однозначно идентифицировать все компьютеры в глобальной сети, чтобы их можно было адресовать и отличать друг от друга.
 2. Организовать маршрутизацию данных от одного компьютера к другому через некоторое количество промежуточных узлов.
Строка 8: Строка 9:
IP-адрес устройства в сети состоит из четырех байт, которые обычно записываются как четыре десятичных числа от 0 до 255, разделенные точками. Распределением IP-адресов занимается организация IANA. Эта организация выделяет диапазоны адресов другим организациям, затем эти диапазоны делятся на более мелкие диапазоны и в конце концов присваиваются компьютерным сетям, и внутри сети устройствам присваиваются адреса из присвоенного этой сети диапазона. Диапазоны организуются так, что у всех компьютеров сети первые несколько бит адреса совпадают, то есть адрес можно разделить на две части: одна из них адресует сеть(т.е одинакова для всех устройств в сети), а другая -- хост в сети, т. е. конкретное устройство. Записывается это следующим образом: после собственно адреса указывается количество бит, адресующих сеть, например 127.0.0.1/8 или 192.168.200.10/24. С развитием концепции глобальной сети на сетевом уровне стека TCP/IP были реализованы возможности по передаче данных из любой сети в любую сеть, независимо от протоколов нижнего уровня. Задачей протокола сетевого уровня IP (''Internet Protocol'') является обмен между устройствами, которые, вообще говоря, не находятся в одной среде передачи данных. Для этого необходимо определить, во-первых, механизм адресации, чтобы можно было выделить среди множества компьютеров тот, которому предназначены данные, и, во-вторых, механизм маршрутизации, отвечающий за доставку пакетов между различными сетями. Рассмотрим подробнее каждую из этих двух функций протокола IP.
Строка 10: Строка 11:
Раньше использовалась другая система. Было установлено несколько классов сетей. В сети класса A адреса имели вид N.H.H.H, где N - это адрес сети, H - адрес хоста. Адреса сетей класса A начинались с бита 0. В сетях класса B использовались адреса вида N.N.H.H, первые два бита адреса должны были равняться 10, для класса C адреса имели вид N.N.N.H и начинались с последовательности 110. === IP-адресация ===
 
Адрес устройства в сети, использующий протокол IP версии 4, состоит из четырёх байт, которые обычно записываются как четыре десятичных числа от 0 до 255, разделённые точками. Распределением IP-адресов в масштабах земного шара занимается организация IANA. Эта организация выделяет диапазоны адресов другим организациям, затем эти диапазоны делятся на более мелкие диапазоны и в конце концов присваиваются компьютерным сетям, и внутри сети устройствам присваиваются адреса из присвоенного этой сети диапазона.

Диапазоны IP-адресов организуются так, что у всех компьютеров одной сети первые несколько бит адреса совпадают. Таким образом, IP-адрес можно разделить на две части. Первая из них адресует сеть и одинакова для всех устройств, подключённых к данной среде передачи данных, а вторая -- хост в сети, т. е. конкретное устройство, например компьютер или сетевой принтер. Записывается это следующим образом: после собственно адреса указывается количество бит, адресующих сеть, например 127.0.0.1/8 или 192.168.200.10/24. Количество бит идентификатора хоста (k) позволяет вычислить максимально возможное количество машин в сети: оно равно 2^k-2. Кроме приведённой краткой формой записи маски, существует и другая, когда маску, подобно адресу, записывают в виде четырёх десятичных чисел. При этом равный единице двоичный разряд соответствует адресу сети, а равный нулю --- адресу хоста. Таким образом, краткой записи маски /24 соответствует полная маска 255.255.0.0.

Назначение масок и адресов сети следующее: если адрес сети двух компьютеров совпадает, то они подключены к одной среде передачи данных, и передача между ними является локальной. Если адреса сети назначения отличается от адреса сети отправителя, то речь необходимо определить маршрут следования IP-пакета с данными. Для решения этой задачи существует IP-маршрутизация.

Ранее использовалась несколько иная, классовая, система IP-адресов. В соответствии с ней IP-адреса делятся на четыре класса: A, B, C, D и E. Принадлежность к тому или иному классу определяется следующим образом: рассмотрим IP-адреса как строку битов и выберем те, у которых первый (старший) бит --- 0. Сети с такими адресами являются сетями класса А; их адрес может быть представлен в виде N.H.H.H, где N --- cеть (''network''), H --- хост (''host''). Под адрес хоста отводится 3 байта, это означает, что внутри локальной сети может находиться примерно 16 млн компьютеров. Соответственно, адрес сети занимает оставшийся 1 байт. В связи с тем, что адреса класса А имеют 8-разрядный сетевой префикс (т.е. сеть идентифицируется 8 битами), их обозначают записью /8. Cетям класса B (N.N.H.H) соответствуют IP-адреса, начальные биты которых --- 10, сетям класса C (N.N.N.H) --- адреса, начальные биты которых --- 110. Аналогично обозначению сетей класса А, сети классов B, C, D обозначаются /16 и /24.

Сетям класса D соответствуют адреса, начальные биты которых --- 1110. Такие сети используются для для групповой передачи данных. Существуют также сети класса E, их старшие биты --- 1111, это экспериментальные сети.

Рассмотрим примеры IP-адресов с указанием маски сети и их связь с классами сетей: 127.0.0.1/8 --- IP-адрес класса А, 192.168.10.2/24 -- адрес в сети класса С, 10.1.2.15/24 --- адрес в подсети с маской /24 в сети класса А.

=== Настройка IP-адреса ===
Строка 14: Строка 29:
# ip addr
Строка 21: Строка 37:
Рассмотрим устройство TCP/IP. Как уже было сказано, на уровне IP идентификация производится при помощи IP-адреса, занимающего 4 байта. В старых книжках по TCP/IP пишут, что IP-адреса бывают четырех классов: A, B, C, D и E. В общем, система классов характеризуется следующим подходом: IP-адрес делится на две части - идентификатор сеть и идентификатор абонента сети. Если адрес сети двух компьютеров совпадает, то передача между ними является локальной, иначе необходимо выяснить, какой маршрутизатор может передать эти данные. Как видно из вывода команды {{{ip addr}}}, вся сеть класса А 127.0.0.1/8 по стандарту распределения адресов отведена под локальный сетевой интерфейс, через который данные передаются только в пределах одного компьютера.
Строка 23: Строка 39:
Принадлежность к тому или иному классу определяется следующим образом: рассмотрим IP-адреса как строку битов и выберем те, у которых первый (старший) бит - 0. Сети с такими адресами являются сетями класса А; их адрес может быть представлен в виде N.H.H.H, где N - cеть (network), H - хост (host). Под адрес абонента отводится 3 байта, это означает, что внутри локальной сети может находиться сразу 16 млн компьютеров. Соответственно, адрес сети занимает 1 байт. В связи с тем, что адреса класса А имеют 8-разрядный сетевой префикс (т.е. сеть индентифицируется 8 битами), их обозначают записью /8. Cетям класса B (N.N.H.H) соответствуют IP-адреса, начальные биты которых - 10, сетям класса C (N.N.N.H) - адреса, начальные биты которых - 110. Аналогично обозначению сетей класса А, сети классов B, C, D обозначаются /16 и /24.

Сетям класса D соответствуют адреса, начальные биты которых - 1110. Такие сети используются для мультикастинга, т.е. для групповой передачи данных, при которой не все абоненты получат информацию. Существуют также сети класса E, их старшие биты - 1111, это экспериментальные сети.

На практике это выглядит следующим образом: 127.0.0.1/8 - IP-адрес класса А.

Однако сейчас классовая система не используется. Вместо нее применяется система диапазонов адресов, которые раздаются по мере надобности. Таким образом, под идентификатор сети можно отводить разное количество бит. Количество бит идентификатора хоста (k) позволяет вычислить количество машин в сети: оно равно 2^k-2. Если адрес хоста состоит только из единиц, то это широковещательный пакет.

Рассмотрим теперь, как приписать интерфейсу IP-адрес: {{{ip addr add 192.168.200.117/24 dev eth0}}}

--

Как приписать интерфейсу IP-адрес: {{{ip addr add 192.168.200.117/24 dev eth0}}} (вообще говоря, их там может быть много). После этого можно сказать {{{ip addr}}}, чтобы посмотреть, что получилсь.
{{{[root@vaio ~]# ip addr add 192.168.200.117/24 dev eth0
[root@vaio ~]# ip a
Одним из способов задания IP-адреса сетевому интерфейсу является использование команды {{{ip}}}. Выполним команду {{{ip addr add 192.168.200.117/24 dev eth0}}}, после этого введем {{{ip addr}}}, чтобы посмотреть, что получилось.
{{{
# ip addr add 192.168.200.117/24 dev eth0
# ip addr
Строка 44: Строка 49:
 }}}

В числе прочего, мы научились вручную настраивать сеть. Данный адрес класса C, это значит, что все компьютеры с адресами 192.168.200.xxx будут считаться принадлежащим нашей сети, а остальные --- другой. Дальше можно проверить работоспособность сети, например, попинговать 192.168.200.1.

Здесь можно вспомнить о таком понятии, как протокол. Вообще, протокол это документ, который описывает, как происходит взаимодействие по сети в разных случаях. Таких протоколов очень много. В частности, на каждом из уровней есть свои протоколы. На уровне сетевом (где есть задачи пронумеровать все машины и организовать маршрутизацию) тоже есть свои протоколы, которые позволяют решать какие-то задачи. Одна из задач, которые должны здесь решаться --- задача передачи диагностических сообщений. Например, невозможна организация маршрута (до получателя). Причём, про это не знает ни наша машина, ни ближайший маршрутизатор, а только некая в середине маршрута. Тогда надо послать диагностическое сообщение оттуда, что пакет не будет доставлен. Это одна из многих задач, которые надо решать, когда нам надо послать диагностику о происходящем. Протокол, решающий эти задачи, называется ICMP, Internet Connection Management Protocol. Это происходит прямо на уровне IP. В частности, команда ping пользуется одиним из типов таких сообщений (ICMP Echo Request). Она посылает специальный пакет, ICMP-пакет, в котором написано "ответь мне пожалуйста". Там есть ещё некая информация о том, какой номер такого пакета. Согласно протоколу ICMP получатель обязан отослать по получении ответ(ICMP Echo Reply).

Несмотря на очевидный системный характер протокола ICMP --- он не несёт никаких данных, чрезвычайно вредно урезать его. При этм нужно знать, какие типы ICMP действительно нужны, а какие --- нет.

Чтобы закрыть вопрос с IP-адресами, лектор добавит вот что: задача перенумеровать все компьютеры адресами невыполнима. Например, есть большое количество компьютеров, которым внешние адреса не нужны. С одной стороны есть преобразование адресов, с другой стороны, есть список адресов, которые не уникальны в интернете. В частности, у каждого сетевого интерфейса есть loopback и адрес 127.0.0.1. Диапазон адресов класса A, который начинается на 10., также не уникален. Кроме того адреса в диапазоне, 192.168.0.0/16 тоже можно раздавать без трудностей. Другое дело, что любой маршрутизатор вам скажет, что компьютеров с такими адресами быть не может. Также локальны 127.0.0.0/8, 172.16.0.0/12.

Вторая проблема, которую надо решить --- маршрутизация.

Прежде чем переходить к маршрутизации, решим один очень важный вопрос. В случае, если несколько компьютеров объединены СПД, то каждое устройство может каждому передавать какие-то данные. Но у нас-то маршрутизация существует на третьем, сетевом уровне, а в СПД определяющим является не IP, а MAC-адрес, более того, может так случиться, что для MAC-адреса может меняться IP, а для IP может меняться MAC. Поэтому не совсем понятно, как может приниматься решение, куда передавать ethernet-frame, ибо мы знаем про абонента только IP. Тут мы встречаемся с понятием сетевой службы, поскольку прежде чем начнётся передача данных, должна произойти операция по выяснению того, куда необходимо отправить данные.

Для того, чтобы в течение некоторого времени хранить данные о том, какому IP соответствуют какие MAС, служат ARP-таблицы. Если сказать {{{ip n}}}, то можно увидеть своих соседей. Если попинговать соседнюю тачку и после этого сказать, то можно увидеть свою ARP-таблицу.
{{{[root@vaio ~]# ip n
192.168.200.1 dev eth0 lladdr 00:10:dc:63:fc:c0 REACHABLE
Строка 63: Строка 51:
Мы научились вручную настраивать IP-адрес и маску компьютера в сети. В соответствии с маской /24 все компьютеры с адресами 192.168.200.xxx будут считаться принадлежащим нашей же сети, а с другими IP-адресами --- каким-то другим сетям. Однако, мы не указали компьютеру, как следует передавать данные, если их получатель находится в не нашей сети. Для этого нужно рассмотреть IP-маршрутизацию.
Строка 64: Строка 53:
Если сказать tcpdump arp, то при пинге какой-то тачки можно увидеть, что происходит в сети. Вообще, {{{tcpdump}}} ввергает карточку в состояние прослушивания всей сети (promiscous mode), для того, чтбы знать, что в сети происходит. === Отображение IP-адреса в MAC-адрес ===
Строка 66: Строка 55:
{{{[root@vaio ~]# tcpdump arp Прежде чем переходить к маршрутизации, рассмотрим вопрос передачи данных в пределах одной сети. В случае, если несколько компьютеров объединены средой передачи данных, то каждое устройство может каждому передавать некоторые данные через канальный уровень, при этом определяющим является не IP-адрес хоста, а его MAC-адрес, обычно закреплённый за сетевой картой. Более того, может случиться, что MAC-адрес может связываться с различными IP-адресами с течением времени, как и IP-адрес может связываться с различными MAC-адресами. Поэтому необходимо выяснить, кому передавать фрейм протокола Ethernet, зная только IP абонента. Для этого, прежде чем начнётся передача полезных данных, следует выяснить, на какой MAC-адрес необходимо отправить данные.

Для хранения данных о том, какому IP соответствуют какие MAС, служат ARP-таблицы. При выполнении команды {{{ip n}}}, то можно увидеть ARP-таблицу с адресами соседей по среде передачи данных. Обычно мы увидим там компьютер с адресом 1 в нашей же сети.
{{{
# ip n
dev eth0 lladdr 00:10:dc:63:fc:c0 REACHABLE
}}}

Если выполнить команду {{{tcpdump arp}}}, то при начале передачи данных какой-то машине можно увидеть, что происходит в сети. Для сброса ARP-таблицы перед экспериментом следует выполнить команду {{{ip n flush all}}}.

{{{
# ip n flush all
# tcpdump arp
Строка 69: Строка 70:
18:38:02.331053 arp who-has 192.168.200.10 tell vaio.local
18:38:02.331257 arp reply 192.168.200.10 is-at 00:a0:c9:b2:ef:c4 (oui Unknown)
18:38:07.331993 arp who-has vaio.local tell 192.168.200.10
18:38:07.332021 arp reply vaio.local is-at 08:00:46:43:09:11 (oui Unknown)
18:38:02.331053 arp who-has 192.168.200.1 tell pspo.local
18:38:02.331257 arp reply 192.168.200.1 is-at 00:a0:c9:b2:ef:c4 (oui Unknown)
18:38:07.331993 arp who-has pspo.local tell 192.168.200.1
18:38:07.332021 arp reply pspo.local is-at 08:00:46:43:09:11 (oui Unknown)
Строка 79: Строка 80:
{{{tcpdump arp}}} говорит, что мы слушаем arp. Когда мы пинговали 192.168.200.10, мы выяснили что:
 * Эта машина в локальной сети, и можно передавать ей данные прямо так
 * Надо выяснить MAC-адрес этой машины, посылаем широковещательный eth-фрейм (ARP-запрос), который говорит следующее: "мужики! адрес 192.168.200.10 у кого? Отвечай!"
 * Получатели принимают этот пакет, понимают на уровень ядра, видят, что это за запрос и отвечают: Дорогой 192.168.200.117, MAC у 192.168.200.10 такой.
 * Когда удалённая машина отвечает на пинг, то она проводит аналогичную операцию.
Команда {{{tcpdump arp}}} говорит, что мы слушаем протокол ARP, предназначенный для выяснения MAC-адреса по известному IP-адресу. В момент начала передачи данных хосту с адресом 192.168.200.1 произошло следующее:
 * Протокол IP установил, что адрес получателя находится в локальной сети, и можно передавать данные непосредственно через среду передачи данных;
 * Для выяснения MAC-адреса получателя всем узлам, подключённым к среде передачи данных, посылается eth-фрейм. Он представляет собой широковещательный ARP-запрос, который сообщает всем остальным машинам примерно следующее: "кому принадлежит адрес 192.168.200.1 - отзовитесь".
 * Получатели принимают этот eth-фрейм, и хост с IP-адресом 192.168.200.1 сообщает в ответе свой MAC-адрес.
 * Инициатор процесса запоминает выясненный IP-адрес в своей ARP-таблице.
Строка 85: Строка 86:
Этот протокол отчасти уровня интерфейсного, потому что происх. обмен eth-фреймами. Отметим, что сам протокол ARP относится к канальному уровню, поскольку в нем происходит обмен фреймами протокола Ethernet без использования протокола IP.
Строка 87: Строка 88:
Переходим к второй задаче IP, а именно маршрутизации. Мы сейчас всё это время имели дело с локальной сетью, то есть машинами в той же СПД. Что будет, если мы захотим переслать пакет удалённой машине (в другую СПД)? Ни одной машине в локальной сети этот пакет не нужен. А кому нужен? Маршрутизатору. В сети должны быть одна или несколько машин, которые занимаются тем, что перекладывают пакеты с одного интерфейса на другой. Общий алгоритм очень простой. Существуют некие правила, по которым в локальной сети выбирается машины, которым передаются пакеты, не адресованные машинам данной сети. Эти правила и называются маршрутизацией. И дальше написания таблички, что за пересылку пакетов в интернет отвечает эта машина, а за пересылку пакетов в другую сеть--- эта, дело и не идёт. У обычных хостов содержимое таблички ограничивается одним или несколькими локальными маршрутизаторами. === IP-маршрутизация ===
Строка 89: Строка 90:
Для указания маршрутизатора по умолчанию, пользователю надо только указать машину, которая является шлюзом (а в случае с DHCP вообще ничего не надо делать): {{{ip route add default via 192.168.200.1}}}. После чего в {{{ip route}}} увидим два маршрута, второй появился автоматом для локальных адресов. В таблице маршрутизации указывается, на какие машины посылать пакеты для каких адресов. Маршруты сортируются по величине маски (количеству бит в маске). Основная задача на сетевом уровне --- организовать маршрутизацию между двумя компьютерами в разных точках земного шара. Для этого требуется пронумеровать все компьютеры уникальными IP-адресами, что практически невозможно. Поэтому все возможные IP-адреса были разделены на две большие группы: внешние (иногда называемые "белыми") и внутренние ("серые"). Последние не являются уникальными и могут назначаться компьютерам локальной сети по желанию администратора. Для них выделены следующие диапазоны адресов: 127.0.0.0/8 для передачи только в пределах одного хоста и 172.16.0.0/12, 192.168.0.0/16 и 10.0.0.0/8 для выделения адресов в локальных сетях. При этом каждый маршрутизатор в интернете считает, что компьютеров с такими адресами быть не может. Для связи между компьютерами с внутренними и внешними адресами существует специальный механизм трансляции сетевых адресов, который будет рассмотрен позднее.
Строка 91: Строка 92:
Как в результате формируется маршрут пакета? Это штука вполне динамическая. В каждой точке маршрутизации принимается решение, куда пакет дальше отправить. Итак, что же будет, если мы захотим переслать по протоколу IP данные машине, подключённой к другой среде передаче данных и имеющей другой адрес сети? Ни одной машине в локальной сети этот пакет пересылаться не должен, вместо этого он должен быть отправлен специальному компьютеру или устройству, называемому IP-маршрутизатором. Поэтому для связи с внешним миром в сети должна быть как минимум одна машина, которая занимаются тем, что перекладывает пакеты с одного своего сетевого интерфейса на другой.
Строка 93: Строка 94:
Чтобы увидеть, как ходит пакет, можно сделать, например, traceroute 89.188.104.91. Как это реализовано? В принципе, в пакете IP есть флаг record route, но его никто не записывает (иначе при больших маршрутах пакет бы перерос сам себя). Вместо этого используется ttl (Time To Live), который уменьшается на 1 каждую секунду или при каждом прохождении через маршрутизатор. Соответственно, сначала посылается ICMP-пакет с ttl=1, и при первом прохождении через маршрутизатор ttl обнуляется, о чём маршрутизатор посылает ICMP-сообщение. Далее посылается пакет с ttl=2. При этом надо понимать, что этот маршрут не обязан быть таким, но даёт представление о маршруте. Таким образом, для передачи данных в другие сети необходимо знать адрес как миниму одного маршрутизатора, подключённого к этой же сети. Существуют некие правила, по которым в локальной сети выбираются машины, которым передаются пакеты, не адресованные машинам данной сети. Эти правила и называются маршрутизацией. Простейшим правилом будет выбор для всех внешних адресов единственного маршрутизатора, называющегося маршрутизатором по-умолчанию (''default gateway''). В общем же случае необходимо написать таблицу, определяющую, какая машина отвечает за пересылку пакетов в Интернет или в другую сеть. У обычных хостов содержимое таблицы ограничивается одним или, реже, несколькими локальными маршрутизаторами.
Строка 95: Строка 96:
==== Хмм ====
Вот что написал, пока заметил, что майнтейнер уже есть. Думаю, поможет. -- VladimirLysikov <<DateTime(2008-07-03T22:08:24Z)>>
Для указания маршрутизатора по умолчанию в случае ручной конфигурации интерфейса необходимо указать IP-адрес машины, которая им является. Команда {{{ip route add default via 192.168.200.1}}} устанавливает 192.168.200.1 в качестве адреса маршрутизатора по умолчанию. После чего, выполнив команду {{{ip route}}}, мы увидим два маршрута; второй, для локальных адресов, появился автоматически. В таблице маршрутизации указывается, каким маршрутизаторам посылать IP-пакеты для разных адресов назначения.
Строка 98: Строка 98:
Задачей протокола IP является передача данных между устройствами, которые, вообще говоря, не находятся в одной среде передачи данных. Для этого необходимо определить, во-первых, механизм адресации, чтобы можно было выделить среди множества компьютеров тот, которому предназначены данные, и, во-вторых, механизм маршрутизации, позволяющий доставку пакетов между различыми сетями. Рассмотрим подробнее каждую из этих двух функций протокола IP. {{{
# ip route add default via 192.168.200.1
# ip route
192.168.200.0/24 dev eth0 proto kernel scope link src 192.168.200.117
default via 192.168.200.1 dev eth0
}}}
Строка 100: Строка 105:
IP-адрес устройства в сети состоит из четырех байт, которые обычно записываются как четыре десятичных числа от 0 до 255, разделенные точками. Распределением IP-адресов занимается организация IANA. Эта организация выделяет диапазоны адресов другим организациям, затем эти диапазоны делятся на более мелкие диапазоны и в конце концов присваиваются компьютерным сетям, и внутри сети устройствам присваиваются адреса из присвоенного этой сети диапазона. Диапазоны организуются так, что у всех компьютеров сети первые несколько бит адреса совпадают, то есть адрес можно разделить на две части: одна из них адресует сеть(т.е одинакова для всех устройств в сети), а другая -- хост в сети, т. е. конкретное устройство. Записывается это следующим образом: после собственно адреса указывается количество бит, адресующих сеть, например 127.0.0.1/8 или 192.168.200.10/24. Как в результате формируется весь маршрут пакета? Это выполняется динамически: в каждой точке маршрутизации принимается решение, куда IP-пакет отправить дальше. Но что делать очередному маршрутизатору, если пакет отправлять некуда, например маршрутизатор по умолчанию не задан, а адресат в таблице маршрутизации не обнаружен? Для ответа на этот вопрос следует рассмотреть протокол ICMP.
Строка 102: Строка 107:
Раньше использовалась другая система. Было установлено несколько классов сетей. В сети класса A адреса имели вид N.H.H.H, где N - это адрес сети, H - адрес хоста. Адреса сетей класса A начинались с бита 0. В сетях класса B использовались адреса вида N.N.H.H, первые два бита адреса должны были равняться 10, для класса C адреса имели вид N.N.N.H и начинались с последовательности 110. === Диагностика сетевого соединения ===
Строка 104: Строка 109:
Для операций с IP-адресами машины в системе Linux можно использовать команду {{{ip addr}}}. Примерный вывод этой команды имеет следующий вид: После настройки IP-адреса машины маски следует проверить работоспособность маршрутизатора по умолчанию, например, отдав команду {{{ping}}}.
Строка 106: Строка 111:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
    link/ether 08:00:46:43:09:11 brd ff:ff:ff:ff:ff:ff
$ ping 192.168.200.1
PING 192.168.200.1 (192.168.200.1) 56(84) bytes of data.
64 bytes from 192.168.37.1: icmp_seq=1 ttl=255 time=1.26 ms
64 bytes from 192.168.37.1: icmp_seq=2 ttl=255 time=0.892 ms
64 bytes from 192.168.37.1: icmp_seq=3 ttl=255 time=0.880 ms
Строка 112: Строка 117:


Чтобы пояснить происходящее при её выполнении, уместно вспомнить о таком понятии, как протокол. Протокол --- это документ, который описывает, как происходит взаимодействие в сети в различных ситуациях. Таких протоколов очень много, и на каждом из уровней стека TCP/IP действуют свои протоколы. Так, на сетевом уровне существуют протоколы, которые из которых позволяет решать определённый круг задач. Основной протокол сетевого уровня --- IP --- предназначен для передачи полезных данных. Другой задачей сетевого уровня является передача диагностических сообщений. Например, маршрутизатор должен уведомить отправителя, если невозможна организация маршрута до получателя, причем это может обнаружить машина в середине маршрута. В таком случае ей необходимо послать диагностическое сообщение о том, что пакет не будет доставлен. Это одна из многих задач, которые надо решать, когда нам нужно выслать сведения о сложившейся ситуации. Протокол, решающий эти задачи прямо на уровне IP, называется ICMP (''Internet Connection Management Protocol''). В частности, команда {{{ping }}} пользуется одним из типов таких сообщений --- эхо-запросами (''ICMP Echo Request''). Она посылает специальный ICMP-пакет в котором содержится информация о его номере и нечто вроде "ответь мне пожалуйста". Согласно протоколу ICMP получатель обязан отослать по получении эхо-ответ (''ICMP Echo Reply'').

Несмотря на очевидный системный характер протокола ICMP --- он не несёт никаких данных --- чрезвычайно вредно отключать или ограничивать его. При этом нужно знать, какие типы ICMP действительно нужны, а какие --- нет.

Чтобы проследить весь путь пакета от маршрутизатора к маршрутизатору, можно воспользоваться командой {{{traceroute}}} с указанием IP-адреса пункта назначения, например:
{{{
$ traceroute 194.107.17.137
1 192.168.1.1 (192.168.1.1) 2.825 ms 3.585 ms 4.160 ms
2 ppp83-237-4-1.pppoe.mtu-net.ru (83.237.4.1) 14.061 ms 15.617 ms 17.048 ms
...
8 te2-3.cerber.citytelecom.ru (217.65.1.246) 23.526 ms 23.508 ms 23.900 ms
9 altlinux-gw.datahouse.su (89.188.100.246) 24.386 ms 25.619 ms 27.260 ms
10 jabber.altlinux.org (194.107.17.137) 28.575 ms 30.186 ms 31.362 ms
}}}

В ответ будут выведены адреса и имена маршрутизаторов, через которые проходит маршрут. Как же это реализовано? Для этого используется специальное поле в IP-пакете, называющееся ttl (''Time To Live''), которое уменьшается на единицу каждую секунду жизни пакета или при каждом прохождении через маршрутизатор. Соответственно, сначала посылается ICMP-пакет с ttl=1, и при первом прохождении через маршрутизатор ttl обнуляется, о чём маршрутизатор посылает ICMP-сообщение в связи с истечением времени жизни IP-пакета. Далее посылается пакет с ttl=2, и так далее. Это позволяет определить место разрыва сети, если проблема связана, например, с работой интернет-провайдера.
Строка 118: Строка 141:
|| 20 || 1 || 1 || 1 || || 1 || MaximByshevskiKonopko, ОльгаТочилкина || || ||90|| 1 || 1 || 1 || || 1 || MaximByshevskiKonopko, ОльгаТочилкина, VsevolodKrishchenko || ||

Сетевой уровень

Задачи сетевого уровня

Организация передачи данных на сетевом уровень предполагает, что компьютеры соединены между собой несколькими средами передачи данных, вообще говоря, совершенно различными. На этом уровне нужно решить две задачи:

  1. Однозначно идентифицировать все компьютеры в глобальной сети, чтобы их можно было адресовать и отличать друг от друга.
  2. Организовать маршрутизацию данных от одного компьютера к другому через некоторое количество промежуточных узлов.

С развитием концепции глобальной сети на сетевом уровне стека TCP/IP были реализованы возможности по передаче данных из любой сети в любую сеть, независимо от протоколов нижнего уровня. Задачей протокола сетевого уровня IP (Internet Protocol) является обмен между устройствами, которые, вообще говоря, не находятся в одной среде передачи данных. Для этого необходимо определить, во-первых, механизм адресации, чтобы можно было выделить среди множества компьютеров тот, которому предназначены данные, и, во-вторых, механизм маршрутизации, отвечающий за доставку пакетов между различными сетями. Рассмотрим подробнее каждую из этих двух функций протокола IP.

IP-адресация

Адрес устройства в сети, использующий протокол IP версии 4, состоит из четырёх байт, которые обычно записываются как четыре десятичных числа от 0 до 255, разделённые точками. Распределением IP-адресов в масштабах земного шара занимается организация IANA. Эта организация выделяет диапазоны адресов другим организациям, затем эти диапазоны делятся на более мелкие диапазоны и в конце концов присваиваются компьютерным сетям, и внутри сети устройствам присваиваются адреса из присвоенного этой сети диапазона.

Диапазоны IP-адресов организуются так, что у всех компьютеров одной сети первые несколько бит адреса совпадают. Таким образом, IP-адрес можно разделить на две части. Первая из них адресует сеть и одинакова для всех устройств, подключённых к данной среде передачи данных, а вторая -- хост в сети, т. е. конкретное устройство, например компьютер или сетевой принтер. Записывается это следующим образом: после собственно адреса указывается количество бит, адресующих сеть, например 127.0.0.1/8 или 192.168.200.10/24. Количество бит идентификатора хоста (k) позволяет вычислить максимально возможное количество машин в сети: оно равно 2^k-2. Кроме приведённой краткой формой записи маски, существует и другая, когда маску, подобно адресу, записывают в виде четырёх десятичных чисел. При этом равный единице двоичный разряд соответствует адресу сети, а равный нулю --- адресу хоста. Таким образом, краткой записи маски /24 соответствует полная маска 255.255.0.0.

Назначение масок и адресов сети следующее: если адрес сети двух компьютеров совпадает, то они подключены к одной среде передачи данных, и передача между ними является локальной. Если адреса сети назначения отличается от адреса сети отправителя, то речь необходимо определить маршрут следования IP-пакета с данными. Для решения этой задачи существует IP-маршрутизация.

Ранее использовалась несколько иная, классовая, система IP-адресов. В соответствии с ней IP-адреса делятся на четыре класса: A, B, C, D и E. Принадлежность к тому или иному классу определяется следующим образом: рассмотрим IP-адреса как строку битов и выберем те, у которых первый (старший) бит --- 0. Сети с такими адресами являются сетями класса А; их адрес может быть представлен в виде N.H.H.H, где N --- cеть (network), H --- хост (host). Под адрес хоста отводится 3 байта, это означает, что внутри локальной сети может находиться примерно 16 млн компьютеров. Соответственно, адрес сети занимает оставшийся 1 байт. В связи с тем, что адреса класса А имеют 8-разрядный сетевой префикс (т.е. сеть идентифицируется 8 битами), их обозначают записью /8. Cетям класса B (N.N.H.H) соответствуют IP-адреса, начальные биты которых --- 10, сетям класса C (N.N.N.H) --- адреса, начальные биты которых --- 110. Аналогично обозначению сетей класса А, сети классов B, C, D обозначаются /16 и /24.

Сетям класса D соответствуют адреса, начальные биты которых --- 1110. Такие сети используются для для групповой передачи данных. Существуют также сети класса E, их старшие биты --- 1111, это экспериментальные сети.

Рассмотрим примеры IP-адресов с указанием маски сети и их связь с классами сетей: 127.0.0.1/8 --- IP-адрес класса А, 192.168.10.2/24 -- адрес в сети класса С, 10.1.2.15/24 --- адрес в подсети с маской /24 в сети класса А.

Настройка IP-адреса

Для операций с IP-адресами машины в системе Linux можно использовать команду ip addr. Примерный вывод этой команды имеет следующий вид:

# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
    link/ether 08:00:46:43:09:11 brd ff:ff:ff:ff:ff:ff

Как видно из вывода команды ip addr, вся сеть класса А 127.0.0.1/8 по стандарту распределения адресов отведена под локальный сетевой интерфейс, через который данные передаются только в пределах одного компьютера.

Одним из способов задания IP-адреса сетевому интерфейсу является использование команды ip. Выполним команду ip addr add 192.168.200.117/24 dev eth0, после этого введем ip addr, чтобы посмотреть, что получилось.

# ip addr add 192.168.200.117/24 dev eth0
# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
    link/ether 08:00:46:43:09:11 brd ff:ff:ff:ff:ff:ff
    inet 192.168.200.117/24 scope global eth0

Мы научились вручную настраивать IP-адрес и маску компьютера в сети. В соответствии с маской /24 все компьютеры с адресами 192.168.200.xxx будут считаться принадлежащим нашей же сети, а с другими IP-адресами --- каким-то другим сетям. Однако, мы не указали компьютеру, как следует передавать данные, если их получатель находится в не нашей сети. Для этого нужно рассмотреть IP-маршрутизацию.

Отображение IP-адреса в MAC-адрес

Прежде чем переходить к маршрутизации, рассмотрим вопрос передачи данных в пределах одной сети. В случае, если несколько компьютеров объединены средой передачи данных, то каждое устройство может каждому передавать некоторые данные через канальный уровень, при этом определяющим является не IP-адрес хоста, а его MAC-адрес, обычно закреплённый за сетевой картой. Более того, может случиться, что MAC-адрес может связываться с различными IP-адресами с течением времени, как и IP-адрес может связываться с различными MAC-адресами. Поэтому необходимо выяснить, кому передавать фрейм протокола Ethernet, зная только IP абонента. Для этого, прежде чем начнётся передача полезных данных, следует выяснить, на какой MAC-адрес необходимо отправить данные.

Для хранения данных о том, какому IP соответствуют какие MAС, служат ARP-таблицы. При выполнении команды ip n, то можно увидеть ARP-таблицу с адресами соседей по среде передачи данных. Обычно мы увидим там компьютер с адресом 1 в нашей же сети.

# ip n
dev eth0 lladdr 00:10:dc:63:fc:c0 REACHABLE

Если выполнить команду tcpdump arp, то при начале передачи данных какой-то машине можно увидеть, что происходит в сети. Для сброса ARP-таблицы перед экспериментом следует выполнить команду ip n flush all.

# ip n flush all
# tcpdump arp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
18:38:02.331053 arp who-has 192.168.200.1 tell pspo.local
18:38:02.331257 arp reply 192.168.200.1 is-at 00:a0:c9:b2:ef:c4 (oui Unknown)
18:38:07.331993 arp who-has pspo.local tell 192.168.200.1
18:38:07.332021 arp reply pspo.local is-at 08:00:46:43:09:11 (oui Unknown)

4 packets captured
4 packets received by filter
0 packets dropped by kernel

Команда tcpdump arp говорит, что мы слушаем протокол ARP, предназначенный для выяснения MAC-адреса по известному IP-адресу. В момент начала передачи данных хосту с адресом 192.168.200.1 произошло следующее:

  • Протокол IP установил, что адрес получателя находится в локальной сети, и можно передавать данные непосредственно через среду передачи данных;
  • Для выяснения MAC-адреса получателя всем узлам, подключённым к среде передачи данных, посылается eth-фрейм. Он представляет собой широковещательный ARP-запрос, который сообщает всем остальным машинам примерно следующее: "кому принадлежит адрес 192.168.200.1 - отзовитесь".
  • Получатели принимают этот eth-фрейм, и хост с IP-адресом 192.168.200.1 сообщает в ответе свой MAC-адрес.
  • Инициатор процесса запоминает выясненный IP-адрес в своей ARP-таблице.

Отметим, что сам протокол ARP относится к канальному уровню, поскольку в нем происходит обмен фреймами протокола Ethernet без использования протокола IP.

IP-маршрутизация

Основная задача на сетевом уровне --- организовать маршрутизацию между двумя компьютерами в разных точках земного шара. Для этого требуется пронумеровать все компьютеры уникальными IP-адресами, что практически невозможно. Поэтому все возможные IP-адреса были разделены на две большие группы: внешние (иногда называемые "белыми") и внутренние ("серые"). Последние не являются уникальными и могут назначаться компьютерам локальной сети по желанию администратора. Для них выделены следующие диапазоны адресов: 127.0.0.0/8 для передачи только в пределах одного хоста и 172.16.0.0/12, 192.168.0.0/16 и 10.0.0.0/8 для выделения адресов в локальных сетях. При этом каждый маршрутизатор в интернете считает, что компьютеров с такими адресами быть не может. Для связи между компьютерами с внутренними и внешними адресами существует специальный механизм трансляции сетевых адресов, который будет рассмотрен позднее.

Итак, что же будет, если мы захотим переслать по протоколу IP данные машине, подключённой к другой среде передаче данных и имеющей другой адрес сети? Ни одной машине в локальной сети этот пакет пересылаться не должен, вместо этого он должен быть отправлен специальному компьютеру или устройству, называемому IP-маршрутизатором. Поэтому для связи с внешним миром в сети должна быть как минимум одна машина, которая занимаются тем, что перекладывает пакеты с одного своего сетевого интерфейса на другой.

Таким образом, для передачи данных в другие сети необходимо знать адрес как миниму одного маршрутизатора, подключённого к этой же сети. Существуют некие правила, по которым в локальной сети выбираются машины, которым передаются пакеты, не адресованные машинам данной сети. Эти правила и называются маршрутизацией. Простейшим правилом будет выбор для всех внешних адресов единственного маршрутизатора, называющегося маршрутизатором по-умолчанию (default gateway). В общем же случае необходимо написать таблицу, определяющую, какая машина отвечает за пересылку пакетов в Интернет или в другую сеть. У обычных хостов содержимое таблицы ограничивается одним или, реже, несколькими локальными маршрутизаторами.

Для указания маршрутизатора по умолчанию в случае ручной конфигурации интерфейса необходимо указать IP-адрес машины, которая им является. Команда ip route add default via 192.168.200.1 устанавливает 192.168.200.1 в качестве адреса маршрутизатора по умолчанию. После чего, выполнив команду ip route, мы увидим два маршрута; второй, для локальных адресов, появился автоматически. В таблице маршрутизации указывается, каким маршрутизаторам посылать IP-пакеты для разных адресов назначения.

# ip route add default via 192.168.200.1
# ip route
192.168.200.0/24 dev eth0  proto kernel  scope link  src 192.168.200.117
default via 192.168.200.1 dev eth0

Как в результате формируется весь маршрут пакета? Это выполняется динамически: в каждой точке маршрутизации принимается решение, куда IP-пакет отправить дальше. Но что делать очередному маршрутизатору, если пакет отправлять некуда, например маршрутизатор по умолчанию не задан, а адресат в таблице маршрутизации не обнаружен? Для ответа на этот вопрос следует рассмотреть протокол ICMP.

Диагностика сетевого соединения

После настройки IP-адреса машины маски следует проверить работоспособность маршрутизатора по умолчанию, например, отдав команду ping.

$ ping 192.168.200.1
PING 192.168.200.1 (192.168.200.1) 56(84) bytes of data.
64 bytes from 192.168.37.1: icmp_seq=1 ttl=255 time=1.26 ms
64 bytes from 192.168.37.1: icmp_seq=2 ttl=255 time=0.892 ms
64 bytes from 192.168.37.1: icmp_seq=3 ttl=255 time=0.880 ms

Чтобы пояснить происходящее при её выполнении, уместно вспомнить о таком понятии, как протокол. Протокол --- это документ, который описывает, как происходит взаимодействие в сети в различных ситуациях. Таких протоколов очень много, и на каждом из уровней стека TCP/IP действуют свои протоколы. Так, на сетевом уровне существуют протоколы, которые из которых позволяет решать определённый круг задач. Основной протокол сетевого уровня --- IP --- предназначен для передачи полезных данных. Другой задачей сетевого уровня является передача диагностических сообщений. Например, маршрутизатор должен уведомить отправителя, если невозможна организация маршрута до получателя, причем это может обнаружить машина в середине маршрута. В таком случае ей необходимо послать диагностическое сообщение о том, что пакет не будет доставлен. Это одна из многих задач, которые надо решать, когда нам нужно выслать сведения о сложившейся ситуации. Протокол, решающий эти задачи прямо на уровне IP, называется ICMP (Internet Connection Management Protocol). В частности, команда ping  пользуется одним из типов таких сообщений --- эхо-запросами (ICMP Echo Request). Она посылает специальный ICMP-пакет в котором содержится информация о его номере и нечто вроде "ответь мне пожалуйста". Согласно протоколу ICMP получатель обязан отослать по получении эхо-ответ (ICMP Echo Reply).

Несмотря на очевидный системный характер протокола ICMP --- он не несёт никаких данных --- чрезвычайно вредно отключать или ограничивать его. При этом нужно знать, какие типы ICMP действительно нужны, а какие --- нет.

Чтобы проследить весь путь пакета от маршрутизатора к маршрутизатору, можно воспользоваться командой traceroute с указанием IP-адреса пункта назначения, например:

$ traceroute 194.107.17.137
1  192.168.1.1 (192.168.1.1)  2.825 ms  3.585 ms  4.160 ms
2  ppp83-237-4-1.pppoe.mtu-net.ru (83.237.4.1)  14.061 ms  15.617 ms  17.048 ms
...
8  te2-3.cerber.citytelecom.ru (217.65.1.246)  23.526 ms  23.508 ms  23.900 ms
9  altlinux-gw.datahouse.su (89.188.100.246)  24.386 ms  25.619 ms  27.260 ms
10  jabber.altlinux.org (194.107.17.137)  28.575 ms  30.186 ms  31.362 ms

В ответ будут выведены адреса и имена маршрутизаторов, через которые проходит маршрут. Как же это реализовано? Для этого используется специальное поле в IP-пакете, называющееся ttl (Time To Live), которое уменьшается на единицу каждую секунду жизни пакета или при каждом прохождении через маршрутизатор. Соответственно, сначала посылается ICMP-пакет с ttl=1, и при первом прохождении через маршрутизатор ttl обнуляется, о чём маршрутизатор посылает ICMP-сообщение в связи с истечением времени жизни IP-пакета. Далее посылается пакет с ttl=2, и так далее. Это позволяет определить место разрыва сети, если проблема связана, например, с работой интернет-провайдера.


Сведения о ресурсах

Готовность (%)

Продолжительность (ак. ч.)

Подготовка (календ. ч.)

Полный текст (раб. д.)

Предварительные знания

Level

Maintainer

Start date

90

1

1

1

1

MaximByshevskiKonopko, ОльгаТочилкина, VsevolodKrishchenko


PspoClasses/080702/04IP (последним исправлял пользователь VsevolodKrishchenko 2008-10-04 10:24:12)