

Multicore and the 32 Core Cavium OCTEON II 68xx

R. E. Kessler

Cavium, Inc.

February, 2013

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results
- OCTEON 68xx Evaluation Board, Program, and Potential Projects

Cavium SoC's for Range of Target Markets

Highly Integrated SOCs enable Lower Real-Estate, Cost & Power

Some Existing OCTEON chips SCAVIUM

OCTEON: Defined the "Intelligent Networking Processor"? (2005+)

Example Usage: Application & Content Aware DPI Flow

- High throughput and Low latency L2 – L7 processing
 - Reassemble packet flows from individual packets
 - Detect high layer protocols and applications (e.g. Email, ftp sessions, VoIP, Messaging, Multimedia, Conferencing, etc.)
- Based on App/Content types
 - ➤ Enforce security, QoS
 - Scan for malware & attacks
- Require comprehensive set of HW acceleration
 - > Packet, TCP, RegEx
 - Crypto, De/Compression

This application needs an intelligent processor tuned for networking

Upcoming: OCTEON III CN78XX

Cores:

- 48 cnMIPS III @ 2.5GHz
- Large shared L2 Cache w/ ECC
- · Cores, Crossbar, L2 @ 2.5GHz

Memory Controllers:

- 4 x 72b DDR3-2133 & DDR4 w/ ECC
- Up to 256GB, 4-rank x4 DIMMs

OCTEON Coherent Interconnect 50+ lanes 10+ Gb Serdes

HW Acceleration (Up to 100G+)

- Packet Processing, QoS, TCP, SCTP, MPLS, FCoE, iSCSI
- Packet Ordering, Schedule, Synch.
- Security, Compression
- Deep Packet Inspection (HFA)
- Search and ACL Lookup (NEURON)
- RAID, De-Dup

Compatibility

 Backward and Software compatible with all OCTEON families

Upcoming: Multi-socket Solution (OCI) SCAVIUM

- OCI connects 2 to 8 OCTEON III SoCs to appear as a single logical multicore processor
- Coherency implemented across Cores, Memory, Network, I/O, and coprocessor
 - Architecture eliminates unnecessary memory copies
 - All connected SoC's can use any coprocessor or I/O
- OCI enables unmatched scalability along with very low latency. E.g. 4-socket system delivers
 - Up to 192 cores
 - Up to 480 GHz of compute power
 - Up to 400 Gbps+ of application processing
 - Up to 1 Terabytes of memory
 - Lowest latency for embedded networking applications

Seamless expansion to 800 Gbps+ of packet processing through OCI

Upcoming: SoC's with 64-bit ARM cores CAVIUM

Project Thunder

 Full custom cores built from the ground up based on 64-bit ARMv8 Instruction Set

 SoC architectures optimized for cloud and datacenter applications

Upcoming: Hardware for Virtualization

Server virtualization

- Virtual machines (VMs) share a physical server
- Software running on a VM has the illusion that it runs on the entire physical server

Network virtualization

- Maintain network connectivity for VMs in a private cloud as if they were connected physical servers inside a campus
- Software-Defined Networking
 - Overlay techniques, e.g. OpenFlow

Isolation

More cores -> isolation more important

OCTEON II CN68XX Block Diagram

- 32 custom designed MIPS64 cores
- Up to 1.5 GHz
- Up to 96G inst/sec, 40+Gbps
- 4 72-bit DDR3 interfaces up to 1600 MHz data rate
- Optimized for service-rich networking, security, wireless, and storage apps
- HW Acceleration:
 - ✓ DPI acceleration with integrated HFA (RegEx Engine)
 - ✓ Comprehensive crypto algorithms and RNG
 - **✓** TCP, Packet Processing
 - **✓** Compression
 - ✓ RAID5/6, De-dup
 - ✓ Multi-core scaling

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

Small CPU Core or Big CPU Core? SCAVIUM

- Many potential Big Core features:
 - Huge caches
 - Very high frequency, deep pipeline
 - Many-way issue
 - Out-of-order issue
 - Floating-point
 - ...
- Important questions:
 - Does the feature add more performance than area/power?
 - Is the feature difficult or expensive to implement, take to production, and support?

- General-purpose, industry-standard 64-bit ISA
- Great fit for networking, security, wireless
- Excellent MIPS/area & MIPS/watt
- Use multi-core to scale product line up and down

- Highest power
- Highest cost
- Greatest complexity (longer implementation time)
- Largest customer support cost
- Not directly mentioned:
 - Frequency
 - Single-thread performance

Frequency Effects

Choosing the Issue Width of Pipeline

cnMIPS II Core 8+ Stage Pipeline

- Shipping at up to 1.8 GHz in 65nm
- Thread-dedicated resources = very deterministic CPU performance
- Highly-associative L1 caches = equivalent miss rate to much larger caches

Optimized Instruction Set Architecture

64-bit Addressing	Efficiently manage large data structures and tables for both data and control planes
Packet Processing Operations	Efficient packet processing, 80+ new instructions added
CRC Instruction	Calculate any 32-bit or shorter polynomials
Memory Atomic Operations	Efficiently implement many statistics counters in memory
Prefetch, Cache hints, Zero Cache Block Instructions	Optimize memory access performanceAvoid or minimize bandwidth consumption
Cache Manipulation Instructions	Lock or invalidate cache lines
Hash Instructions	SHA1, SHA2, MD5 accelerate comparison of large data blocks
Conditional Move Instructions	Avoids conditional branches

Optimized for Layer 2-7 Intelligent Networking Applications

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

OCTEON Cache Policies

- L1 <-> L2 Cache: Write-through
 - Excellent performance for networking and mobile applications
 - Minimal per-CPU-core cost
 - Simple and highest performance
 - Lowest possible read latencies
 - Allows many outstanding stores, optimizations
 - Automatic L1 error correction
- L2 Cache <-> DRAM: Write-back
 - Standard DDR3 DRAM DIMM's are highest performance with block transfers
 - Minimizes required DRAM bandwidth
 - Don't-write-back feature (e.g. for most of packet data) plus additional cache hints

OCTEON L1<->L2 Coherence and Memory Model

- Write-through, write-invalidate coherence protocol
- L2 Cache Controller is the coherence point
 - L2 controller tracks L1 cache contents
 - Invalidates to maintain L1 coherence
- Aggressive write-buffering in cnMIPS II cores eliminates writes
 - 2 KB merging write buffer
 - Fully-coherent, loosely-consistent memory model
 - Page-wise hints to eliminate writebuffer flushes of private data

Interconnect

Redrawn:

32 Core OCTEON Coherent Interconnect

- Crossbar interconnect easily scales to 32 cores
- Optimized for both low latency and high bandwidth
- Flat, deterministic latency profile
- Best combination of scalability and low-power

32-Core OCTEON

700 Million
40-65W
1.6GHz
1. 0V
65nm CMOS
10 copper
32
37KB
32KB
4MB

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

Core Peak Power: 1.28W @1.6GHz

OCTEON 68xx Power Optimizer Technology

- Per-CPU dynamic power consumption estimates
- Per-CPU dynamic power threshold
 - Hardware threshold
 - Software threshold in a register
 - Software can quickly and easily change it
- Hardware threshold can limit worst-case power
- Software threshold can:
 - Reduce average power (open loop)
 - Reduce temperature (closed loop with thermal sensor)
 - Other ...

Core Power Management

Power Management and Performance

Correlation Measured vs Estimated Power

Core Power as a Percentage of Max

OCTEON Power Management Comparison

- Advantages compared to dynamic voltage and frequency scaling (DVFS):
 - Very fine-grained core-by-core power control
 - A low power application is not penalized
 - Frequency reduction affects all applications
 - 95+% of applications don't achieve 80% of max power
 - Power optimizer settings can change instantly with minimal software interruption
 - Simpler chip and system design
 - Voltage and frequency do not need to change

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

Overcoming Amdahl's Law in Multicores

Work Queue Creates Sequential Bottleneck

OCTEON's overcome this bottleneck:

- Hardware packet classifier that tag packets
- Hardware load balances packets among cores using tags
- Cores pick up packets for processing using tags

OCTEON Schedule/Synch/Order Hardware

- Work queueing
 - Unlimited-size queues for work
 - Work can be created by software
 - Work can be created by hardware
 - e.g. packet arrival
- Work/Packet Ordering
- Automatic synchronization and lock-removal
- Dynamic work scheduling
 - Hardware selects from amongst input queues
 - Quality of service
 - Different cores can receive different work
 - Integrated with ordering and synchronization
 - Work proceeds only when ordering and synchronization allows

Packet Processing without Schedule/Sync/Order Hardware

Packet Processing with Schedule/Synch/Order Hardware

OCTEON provides lock-free access to packets, removing the sequential bottleneck for packet processing

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

OCTEON's Accelerator Usage

OCTEON's offload compute-intensive functions

- Encryption & decryption
- SSL processing
- Memory allocation
- Compression & decompression
- Network search & lookup
- Regular expression processing
- ...

Implication for processor cores

Accelerators reduce the need for power-inefficient complex cores

OCTEON Deep Packet Inspection

- Many applications require Deep-Packet Inspection (DPI):
 - Intrusion detection/prevention, Packet classification, ...
- We focus on pattern matching here
 - DPI may also require packet, TCP, and other processing that can be accelerated by other OCTEON coprocessors
 - The percentage of data scanned for matches varies for different applications
 - a few percent (e.g. Application Recognition) to most packet bytes (e.g. Anti-Virus, IPS)
- Patterns/rules are often regular expressions
 - Pre-compiled into hardware state machines
 - Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata (NFA)
- Includes graph compression and caching to maximize coverage and performance

68xx Deep Packet Inspection HFA Hardware

Agenda

- Cavium Multicore Background and Upcoming
- 32-core OCTEON 68xx Architecture
 - Efficient CPU cores
 - Cache coherence, interconnect & memory bandwidth, chip floorplan
 - Power scalability
 - Hardware work queueing, scheduling, synchronization, and ordering assist
 - Coprocessor acceleration
- 32-core OCTEON 68xx Performance Results

IPv4 Packet Forwarding

Full IPSEC Application

Conclusions

 Cavium is applying multicore products to networking, server, and other markets

- The OCTEON architecture includes:
 - Efficient CPU cores
 - Scalable Interconnects
 - Power Scalability
 - Hardware Queueing, Scheduling,
 Synchronization, and ordering assist
 - Coprocessors suitable for target markets

Questions?

OCTEON 68xx Evaluation Board, Program, and Potential Projects

OCTEON II CN68XX

CN68XX EBB Specifications

- Powered via standard ATX power supply
- 5 QLM (Quad Lane Module) Connectors for I/O Modules
- Support for up to 8 DDR3 DIMMS
- 2 Serial Ports for console access and debugging
- 2 USB Host Ports
- Ethernet Management Port
- EJTAG Connectivity for debugging
- Compact Flash Storage

QLM SERDES Modules

QLM Module for PCIe Root Complex is also included (not shown)

OCTEON II Program – Spring 2013

- 5 Universities Using the OCTEON II for Class Projects
 - Cornell (Prof. Jose Martinez)
 - CMU (Prof. Onur Multu)
 - Harvard (Prof. David Brooks)
 - MIT (Prof. Daniel Sanchez)
 - Uppsala (Prof. Stefanos Kaxiras)
- OCTEON Workshop Boston in May (Date/Venue TBD)
 - Student Presentations of Projects OCTEON Trophy for Best Paper
- Annual "Global Multicore Challenge"
 - Programming Contest Open to All Undergraduates
 - Look for Details in March

Program Resources

- Visit the Cavium University Program Website
 - www.university.cavium.com
 - OCTEON Resources, Text Books, White Papers
- Sign Up on the Cavium Users Group Website
 - www.cnusers.org
 - Join the University Discussion Group to Collaborate with other Students
 - Blog about your project, share results, network with others
- Sign Up on the Cavium University Facebook Page
 - www.facebook.com/CaviumUniversityProgram
 - 1600 students from 100 universities
 - Industry and University Related Content, Feel Free to Comment/Post
- Contacts Program People
 - Jim Ballingall, Program Director (jim.ballingall@cavium.com)
 - Binitha Surendran, Program Manager (<u>binitha.surendran@cavium.com</u>)
 - Gregg Bouchard, Program Engineer (<u>gregg.bouchard@cavium.com</u>)

Suggested Spring 2013 Projects

- "Bump in the Wire" Applications
 - Monitor N Packet Flows on N Processors
 - Use Accelerators for Packet Inspection and Pattern Matching
 - Intrusion and Malware Detection
- Performance/Power Scaling Tradeoffs and Management
 - Optimize Performance and Power for N Cores
 - Vary the Number of Cores and Workloads
 - Off-load Tasks to Accelerators
 - Optimize Parallel Program Code for Specific Workloads