Union Mount

VFS based File System Namespace
Unification for Linux

Bharata B Rao
<bharata@linux.vnet.ibm.com>

IBM Linux Technology Center

December 2007

mailto:bharata@linux.vnet.ibm.com

Agenda
* Introduction to Union Filesystems.
« Basics of Filesystem Mounting.
 Union Mount.
« Semantics.
* Internals of Union Mount.
« Comparison with FS based approaches.
« Getting involved.

File System Namespace Unification

« Concept of merging the contents of two or
more directories/filesystems to present a
unified view.

/dev/sdal /dev/sda2

file2 dir2/

bottom/

filel dirl/ top/

filel file2
dirl/ dir2/
top/ bottom/

Users of Unification

 Live CD systems - Writable RAM based FS
combined with a read only FS on CD, thus
allowing a writable disk-less system.

 Server Consolidation - Many servers sharing
a common RO installation.

 Disk-less NFS-root clients - Set of machines
sharing a single RO NFS root filesystem.

« Sandboxing

- Simulation of software updates.
- Testing OS updates.

History

Sun's Translucent Filesystem (TLS) provided
filesystem unification.

BSD provided a fully featured union mount
Implementation with whiteout and copyup
support.

Plan 9 had Union Directories.

MAC OS X inherited union filesystems from BSD,
but didn't provide whiteout support.

Linux Approaches

Unionfs (in -mm) from Stony Brook University.
Aufs a fork of Unionfs.

Both Unionfs and Aufs are filesystem based
approaches.

Union Mount is a Virtual File System (VFS)
based approach to filesystem namespace
unification. (Original patches by Jan Blunck)

Unification at FS Layer

USER T
KERNEL]

Union File System|

EXT3 REISERFS

Unification at VFS Layer

USER T
KERNEL l

VFS

Union Mount

" R T T

EXT3 REISERFS

File System Mounting

« Namespace - A hierarchical view of the filesystem
contents.

/

/\

dev . home i W bin .. usr

SHE S O N

 Mounting - Adding the FS in the device to the
namespace tree.

« Eg: mount -t ext3 /dev/sdal /mnt

- ext3 - FS type, /dev/sdal — Device, /mnt — Mount point
e struct path { struct vfsmount *, struct dentry

* }; uniquiely identifes a file in a namespace across
the system

Union Mount

Transparent mounts
- mount /dev/sdal /mnt
- mount —union /dev/sda2 /mnt

« /mnt becomes the union mount point of sdal
and sda?2.

« sda2 becomes the topmost writable layer.
« sdal is the RO bottom layer of the union.

Union Mount Semantics

* Directory listing (readdir)
- Merged contents of all directories of union.

- For same named files in multiple layers, only top
layer file is shown.

- Same named directories are merged again.
 Lookup
- Starts with topmost directory and proceeds
downwards.

- Stops and returns when the required file is
found.

- Descends into all lower layers in case of
directories to create subdirectory level
unions.

... Union Mount Semantics

RO lower layers, copyup

- All but the topmost layer are RO immutable
layers.

- Write to a lower layer file results in the file
getting copied to topmost layer and write being
performed on the copy.

- Creates shadow directories if needed during
copyup.
« Whiteouts

- Place holders for files that don't exist logically.

- Deletion of a lower level only file/directory
creates a whiteout for it in the topmost
directory.

- Whiteout lookup returns -ENOENT.

Normal Mount

mount /dev/sdal /mnt

vifsmnt root dentry of /dev/sdal

mnt_root =

/ mnt_mountpoint

mnt_parent

hash()

(vfsmnt, dentry) vfsmnt dentry of /mnt

\ d_mounted++

Union Mount

mount =--union /dev/sda2 /mnt

vismnt root dentry of /dev/sda2
mnt_root \
mnt_mountpoint K-
/ hash()
mnt_parent

hash()

vfsmnt dentry of /mnt

(vfsmnt, dentry]| V

. d e struct
“\ it union_mount

e

v
...........
....................

Union Stack

« Different layers of union are maintained as
stack in VFS.

« (vfsmount, dentry) pairs are used as building
blocks of union stack.

« Two layers of a union are linked together using
a union_mount structure.
struct union mount {
struct list head u unions;
struct list head u list;
struct hlist node u hash;
struct hlist node u rhash;

struct path u this;

struct path u next;

... Union Stack

 Union stacks are built from two places:

- During mount operation or mount propagation.

- During lookup of a directory that is present in
more than one layer of the union.

« Union stacks are destroyed from two places:

- During an un-mount operation.

- When the upper layer dentry is destroyed after it
becomes unused.

Union Mount Structure

Union of (mnt2,dentry2) on top of (mntl,dentryl)

mni2 dentry2
T LA
‘ . '-f +'+-.
\] — . —=, List of unions this dentry
\ (dentry?2) is part of
‘\ T List of unions in this
vismount (mnt2)
u21
‘\ (struct union_mount)
Uwx | . Uyz | -
3 el = == >
u unions |~
u list
= ",
u next ~
™ Uwx |- | Uyz |~
mntget{mntl get(dentryl)

mntl dentryl

Directory Listing
* Directory entries are read using getdents(2) or
readdir(2).
struct dirent {
long d ino; /* inode number */
off t d off; /* offset to this dirent */
unsigned short d reclen; /*length of d name*/
char d name[NAME MAX+1]; /* filename */
}i
 Dirents are stored in a cache as and when they are
read.

 Dirents from all but the topmost layer are compared
against this cache to eliminate duplication.

« TODO:
- An approach which works for all filesystems.
- An approach which supports llseek(2).

Copyup
« Write to a lower layer file is performed after
copying the file to the topmost layer.

« Copy on Open: Copy is done when the file Is
opened for writing.

 Lookup path has been modified to create the
shadow directories in the topmost layer.

* In-kernel file to file copy using splice.

« TODO:

- Currently only copyup of regular files supported.
- Support copyup from other places like chmod(2).
- Need to handle links correctly.

Whiteout

« Whiteouts are necessary to provide writable
unions.

« Whiteouts are handled entirely within kernel
and they are transparent to users.

 Added whiteout() inode operation.

* Filesystems need to implement ->whiteout() to
provide whiteout support.

« Typically filesystems are expected to create
and use a singleton whiteout inode for all
whiteout files in the filesystem.

« TODO:

- Whiteout support available only for tmpfs,
ext2/3/4 and need to add support for other
filesystems.

Rename

« For files and directories present only in the
topmost layer, traditional rename is used.

« Rename of a directory which is part of a union
or which is present only in the lower layer is
deferred to userspace by returning -EXDEV.

« Renaming of a regular file present only in the
lower layer is done by copying it up to the
topmost layer.

« For both source and target of rename, shadow
directories are appropriately created during
rename.

Problems with FS based approaches

« Stack information maintained by a separate
filesystem.

 Pseudo VFS objects (like dentry, inode, file)
maintained which link to real VFS objects from
the underlying filesystems.

 Maintaining coherency between union
filesystem and the underlying filesystem needs
extra efforts.

- Direct additions/deletions.

- Direct modifications: metadata and page cache
coherency.

Opportunities for
Contributions(as of Nov 2007)

« Union Mount is still a work in progress and
patches are in RFC state.

 Not much consensus has been reached on
many aspects (Eg. directory listing), so there is
a scope to get involved and contribute.

« Patches are mostly not tested thoroughly and
there exists some corner cases where it breaks.

« Writing Union Mount test cases for LTP is
highly desired.

Union Mount Patches

Union Mount doesn't have a project site of its
own and most development, postings happen
on linux-kernel and linux-fsdevel mailing lists.

Our last posting: http://Ikml.org/lkml/2007/7/30/193

Recent patches can be found at:
ftp://ftp.suse.com/pub/people/jblunck/patches/
(temporary)

Needs changes to util-linux package to
support —union mount option.

http://lkml.org/lkml/2007/7/30/193
ftp://ftp.suse.com/pub/people/jblunck/patches/

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, IBM(logo), e-business(logo), pSeries,
e(logo) server, ans xSeries are trademarks or
registered trademarks of International Business
Machines Corporation in the United States
and/or other countries.

Linux is a registered trademark of Linus
Torvalds.

Other company, product, and service names
may be trademark or service marks of others.

