
An Implementation of the Solaris Doors API for Linux

Jason Lango (jal@cs.brown.edu)

Fall/Spring 1998

1 Introduction

The purpose of this paper is to describe the implementation of the Solaris Doors API on the
Linux1 operating system and to show the relative performance improvements that doors
can offer versus some of the standard UNIX IPC mechanisms.

2 Motivation

Linux is a freely available UNIX-like2 operating system for many varied hardware plat-
forms. As of this writing, Linux is supported on the DEC Alpha, Intel x86, Sun SPARC
and UltraSPARC, Motorola 68000 and PowerPC, Advanced RISC Machines ARM, and
SGI MIPS processors. The list of supported hardware continues to grow at a rapid pace,
mostly due to the strong programming support garnered by the open software development
model and increased media and commercial support. Linux is used in a wide variety of
applications, from the desktop to distributed-memory [8] and cluster-based [3, 4] supercom-
puting. The growing popularity of the Linux operating system, combined with the ability
to freely publish source code modifications to the operating system, motivated its use in
this project.

3 The Linux Architecture

Figure 1 shows a high-level view of the architecture of the Linux kernel.
Linux has the notion of virtualized file systems, files, inodes, directory cache, memory

mapping objects, page tables, etc. The virtual file structure (struct file) is used for each

1At the time of writing the Doors implementation, Linux was at version 2.1.79 of the kernel. Presumably
most of what is discussed here will be relevant until at least 2.3.x.

2While there do exist Linux distributions which have the official POSIX.1 certification, most do not due
to the expense of obtaining such certification.

1

read()
write()
lseek()
...

Coda

ext2
UFS

msdos
NFS

Generic Buffer Cache

Generic File Mapping

mmap()
mprotect()
mlock()
...

FSVM Scheduler
Processes

Drivers - Block and character devices
SCSI, IDE, etc.

Virtualized
 Page Tables

Page Allocation

...

Mapping
 objects

...

Directory
 cache

...

Figure 1: Linux Kernel Architecture

open file referenced by a particular process (including special files, such as pipes, sock-
ets, etc.). The virtual inode (struct inode) is used for each representation of a shared
file, much as the vnode is used in SVR4 and BSD. The virtual memory mapping object
(struct vm area struct) is used to represent an instance of a particular type of mem-
ory mapping, such as an anonymous mapping (straight to physical memory), generic file
mapping, shared memory mapping (POSIX and System V), etc. The virtual page tables
(pgd t, pmd t, pte t) are used to define a method for architecture-independent access
to the actual memory management hardware through an abstract three-level page table.
The directory cache is a global resource, whose entries can be customized by particular file
system implementations (but generally are not).

There are several books available which contain greater detail about the architecture
of the Linux kernel [5, 2]. This implementation of Solaris Doors on Linux implements a
virtual file structure for the door, a device driver for Doors API method invocation, and
uses the directory cache in order to implement a file-on-file mapping similar to the SVR4
STREAMS fattach(3) function (see below).

4 Introduction to the Solaris Doors API

The Solaris Doors API is essentially an RPC mechanism, which makes use of the UNIX
notion of the filesystem as a universal name space and has built in support for multi-
threading.

The fundamental building block of this RPC mechanism is the door. Abstractly, the
door can be thought of as a service procedure or object, upon which a thread can invoke a

2

method (or function call). The door is often referred to in the literature [6, 7] as “describing”
a particular procedure in a remote server.

Doors are made visible to the applications programmer as standard UNIX file descrip-
tors (or “door descriptors”). To make a door visible to other applications, a process may
attach an existing door descriptor to an existing regular file in the UNIX file system, using
a standard SVR4 mechanism for associating STREAMS file descriptors with files in the file
system.

What follows is a list of the relevant library routines encompassing the Solaris Doors
API, and the two related routines fattach(3) and fdetach(3). Most detail is omitted, since
it is covered at length in the Solaris documentation [7], but there should be enough to
provide a general overview of the supported functionality.

• door create(3) is used to create a new door. The function takes as its arguments a
server procedure, data cookie, and flags. The data cookie is a value passed to the
server procedure every time this door is the target of a door call(3) method invocation.
The result of the function call is a door descriptor, which can subsequently be used
for door call(3) invocations, attached to a file with fattach(3), or passed directly to
other processes (again via door call(3)). The process which calls door create(3) is the
same process which handles door call(3) invocations. Any running process can be a
door server, simply by calling door create(3).

• door call(3) is used to invoke a procedure call in the remote server process which
created the door using door create(3). The function takes as its arguments a door
descriptor, representing the procedure to call in the server, a memory block (contain-
ing the arguments for the procedure call), and a set of door descriptors which are to
be passed to the server process. The door descriptor is the only required argument,
the memory block and set of doors are each independently optional. The result of
the function call is either an error code, or another memory block and set of door
descriptors from the server process (again, both are optional, at the server’s discre-
tion). The client process may provide a memory buffer in which the results (if any)
from the server will be placed. If the client-provided result buffer is too small to hold
the results from the server, the operating system will allocate a new memory block
large enough to hold the results of the call.

• door return(3) is used within a server procedure to return values to the client process.
It is only valid to call door return(3) within a server procedure called by a door call(3)
invocation. The arguments that this function takes are a memory block and set of
doors to be returned to the client process (as the results of door call(3)). Both
arguments are optional.

• fattach(3) is used to attach a door descriptor to a regular file in the UNIX file system.

3

The function takes as arguments the door descriptor and a pathname to the regular
file.

• fdetach(3) is used to detach a door descriptor from a regular file (attached via fat-
tach(3)). The function takes the pathname to the file as its argument.

• door revoke(3) is used to revoke access to a door. All future door call(3) invocations
through any door descriptor referring to this door will fail.

• door info(3) is used to get information about a door. This function returns the process
id of the server which handles door call(3) invocations, the server procedure (address
in the server process), the data cookie for this door, a system-wide unique identifier
for the door, and certain other attributes, such as whether the current process is the
server for the door, whether the door has been revoked, etc.

• door cred(3) can be used within a server procedure to get the credentials of the client
process giving the current door call(3) invocation. This function returns the user id,
group id, and process id of the calling thread’s client.

• door server create(3) is used to register a function which will be called in the server
process whenever the kernel thinks that a new thread should be created. This allows
the programmer the ability to control how many threads are actually created in the
server and the initial parameters of the server threads (e.g. scheduling parameters,
signal dispositions, etc.).

• door bind(3) is used to bind the calling thread to a particular door. The calling thread
will be one of a set of threads which will specifically handle invocations on this door.
The door must have been created will the “private” attribute (via door create(3))
indicating that it has a private pool of server threads.

• door unbind(3) is used to remove the calling thread from a particular door’s private
server pool.

The Doors API was engineered with certain performance optimizations in mind. Server
threads will be created in the calling process in proportion to the load on the server (at
most one per concurrent request) [6]. The server may control how many threads are created
via door server create(3). Since the programmer doesn’t necessarily provide the memory
block to receive arguments to and from door call(3), the kernel may optimize the transfer
of large arguments by mapping the underlying pages of memory into the target process and
copying a page only if a process attempts to modify it. The kernel may also use handoff
scheduling to optimize door call(3) invocations [6].

4

5 Summary of Work

The majority of the work involved in this project is in the implementation of a subset of
the Solaris Doors API for Linux. Omitted from this implementation is maintaining private
server pools for doors (via door bind(3) and door unbind(3)), server thread cancellation
when a client thread is interrupted, using handoff scheduling to optimize door call(3), and
sending a DOOR UNREF message when only one open door descriptor remains pointing to
the door. Memory mapping large arguments between client and server was implemented,
which is not implemented in Solaris 2.6 [6].

Benchmarks were taken comparing the speed of doors on Linux versus other IPC mech-
anisms.

6 Implementation of the Doors API on Linux

6.1 Representing the door

The Linux kernel has a virtualized filesystem, similar to the SVR4 VNODE/VFS subsys-
tem. The Linux inode structure is similar in spirit to the SVR4 vnode, in that it is an
in-memory representation of an abstract inode.

The door is represented in the kernel code as a door structure and associated door
inode. The door inode has special member functions for open and close operations, and
refers to the underlying door structure via the filesystem specific information pointer (the
generic ip member).

When a new file descriptor refers to a door inode, the kernel will automatically call
door open(), which will increase the reference count on the door. When a file representing
a door is closed, the kernel will call door release(), which will decrease the reference count
on the door. When the reference count goes to 1 and the door has the DOOR UNREF
attribute, a special message should be sent to the door’s server process3.

When a doors library call refers to a particular door via a door descriptor, the doors
kernel code will look in the current process’ file descriptor table, find the appropriate inode
(indirectly through a file structure and then its dentry structure), then get the underlying
door through the filesystem specific data pointer.

6.2 Sending a request: door call(3)

In order to perform a door call(3), the client first gets the door inode from its file descriptor
table, allocates a door message, initializes the door message with the door, current task,
and arguments, enqueues the message on the door’s message queue, then wakes a server
and goes to sleep itself.

3Not currently implemented.

5

If the client is interrupted while waiting for the results of the door call(3), the client
thread will first set the dm client member of the door message to NULL, then return an
error code.

On a successful reply, the client thread destroys the door message and frees any
associated buffers.

6.3 Receiving and replying: door return(3)

When the user library calls the kernel interface to door return(3), the calling server thread
first checks to see if it has a request in progress. If so, it will copy its output arguments (if
any) and wake the client thread. If the dm client member of the door message structure
is NULL, the server knows that the client has been interrupted and destroys the message,
freeing any reply buffers.

If the kernel mapped memory into the process address space during the previous request
(the one to which we have just responded), the server thread now unmaps this memory.

The server thread then looks for a request to handle. If no requests are available, the
server thread sleeps on a wait queue specific to its server process.

When the server thread gets a request to handle, it performs any argument copying that
is necessary, caches the client credentials, frees any leftover buffers which aren’t needed
during the handling of the request, then returns to user-level.

At this point, the server thread appears to be returning from the last call to door return(3).
The doors user library notices that the DOOR RETURN ioctl has returned and does a
longjmp(3) to the top-level call to door return(3), returning to the top of the stack.

6.4 Identifying the current server process

The function find server() is used by most of the doors kernel routines to identify the
door server structure for the current task. This function is complicated by the fact that
threads in Linux currently4 don’t share the same process id. The process id of the thread
which created a door cannot uniquely identify all other threads within the same process.

Linux’s threads are essentially variable weight processes which share system resources
[1], such as the file descriptor table, virtual address space, etc. In the Linux kernel, a
variable weight process is called a task.

In order to provide what is seemingly the most generality, find server() uniquely
identifies a process as the set of tasks which have the same file system structure (fs struct).

4As of version 2.1.79.

6

6.5 Creating threads for incoming requests

In order to make as few assumptions as possible about the threads library, threads are
not created from within the kernel. When the first door create(3) is issued by a potential
server process, a special thread is created in that process. This thread, considered internal
to the doors user-level implementation, spends most of its time sleeping on a kernel syn-
chronization object. When the kernel needs to create a thread, it wakes up this thread,
which proceeds to call the user-level server creation function; possibly the one which the
user installed via door server create(3) or the internal doors library function which creates
a default pthread which immediately calls door return(3).

6.6 File on file mounting: fattach(3)

Linux, unlike Solaris, does not have a built-in notion of STREAMS devices. Furthermore,
there is no generic facility to accomplish file on file mounting, as in namefs in Solaris [6].
fattach(3) and fdetach(3) were implemented as wrappers around part of the doors kernel
interface.

do door fattach() implements file on file mounting by using Linux’s directory cache,
much as the implementation of actual file system mounting works. Each dentry (directory
cache entry) has a member d covers and a member d mounts. These members point to
further dentry structures. A file on attached on top of another file will have a dentry
whose d covers field is non-NULL. A file with a file attached on top of it will have a dentry
whose d mounts is non-NULL. We raise the reference count on both dentry structures,
such that neither will leave the directory cache until the file is unmounted (via fdetach(3)).
open(2) will automatically scan the d mounts member of a dentry hit in the directory
cache, so when the regular file is opened it will automatically select the file mounted on it.

do door fdetach() simply reverses this operation, setting d mounts and d covers on
both dentry structures to NULL, then lowering their reference counts.

6.7 Avoiding implementing system calls: /dev/door

When writing the library and kernel code, it would be ideal to have an implementation
which would be (1) architecture independent (that is, it should ideally simply require a
recompile to run on any machine architecture that Linux supports, now and in the future)
and (2) relatively easy to program and debug.

To satisfy (1), the decision was made to make the user library interface with the kernel
via a character special device, namely “/dev/door”. The entire user to kernel interface
consists of ioctl(2)s on this character special device, essentially passing messages to the
device driver which provides the entire kernel-level doors implementation. This has the
advantage that we avoid having to write new system calls, which is architecture-dependent
in Linux.

7

Implementing the doors kernel interface as a device driver has the additional advantage
that it can be written as a loadable kernel module, satisfying (2) in that debugging time
is decreased by not having to reboot the machine for each iteration of the code, compile,
debug cycle and also being able to track the latest version of the kernel (since none of the
kernel code proper needed to be modified).

The trade-off in this approach is that there is a small performance penalty associated
with making all of the door calls ioctl(2)s on “/dev/door”, but it should not be a difficult
task to make them system calls in order to optimize them for a particular architecture.

6.8 Mapping arguments: door vm copy()

When either the result buffer in the client is too small to accept an output argument or
set of door descriptors, or the input arguments to the server procedure exceed a predefined
constant size, door vm copy() is called to map the arguments from the source process
address space to the destination process address space.

There are a number of special cases which must be handled by this function and asso-
ciated helper functions:

• Unmapped regions - if part of the source region is unmapped in the source process
address space, the copy must fail.

• Non-present pages - if a page is not present (i.e. is on a swap device or resides in its
backing file), it must be faulted in.

• Mapped files - if part of the source region in the source process address space is a
memory mapped file object, the pages cannot be shared, since changes to the file
would cause the server to witness changes in its input arguments.

• Page-alignment - if the source buffer doesn’t start or end on a page boundary, the
first and last pages must be explicitly copied such that no extra information is given
to the target process, thus causing the copy to be a security hazard.

The algorithm that door vm copy() uses is fairly straightforward:

1. Find the first source mapping object, and verify that it is valid.

2. If the start address isn’t page aligned, create a new page in the target process which
contains the appropriate portion of the first source page, faulting in the source page
if necessary.

3. For each subsequent full page in the source range, find the source mapping object.
If the source mapping object is a file, fault in the page and copy it to a new page
in the target process. If the source mapping is a regular page, map it copy-on-write
into the target process.

8

4. If the end address isn’t page aligned, create a new page in the target process which
contains the appropriate portion of the source page, faulting in the source page if
necessary.

To optimize the mapping of the middle pages, one may find the remaining contiguous
pages within the source mapping object and map them all using the same flags and mapping
method (e.g. copy-on-write or real copy).

7 Benchmark Results

A benchmark was run on a Digital ALPHAstation 255 (single 300 MHz Alpha processor)
running Linux 2.1.79, comparing the speed of passing a message and waiting for a response
using a door to the equivalent programs using pipes and ONC-RPC. Figure 2 shows the
results of the benchmark.

An equivalent benchmark was run on a Sun Microsystems Ultra-1 (one 200MHz Ul-
traSPARC processor) running Solaris 2.6 (figure 3) and on an Intel Pentium 100 running
Linux 2.1.72 (figure 4).

The benchmark shows how the response latency varies with the size of the message
passed from the client to the server. The latency of the door implementation on Linux
is comparable to that of the pipe implementation, until we reach a message size of 16384
bytes, at which point the kernel door implementation switches to mapping its arguments
between the client and the server, thus affecting a big performance improvement over the
pipe implementation.

9

10

100

1000

10000

0 20000 40000 60000 80000 100000 120000 140000

T
im

e
(u

s)

Message size (bytes)

Average time per request

Pipe
Door

ONC-RPC, using UDP

Figure 2: Doors versus standard UNIX IPC, Linux 2.1.79 on ALPHAstation 255

10

10

100

1000

10000

0 20000 40000 60000 80000 100000 120000 140000

T
im

e
(u

s)

Message size (bytes)

Average time per request

Pipe
Door

ONC-RPC, using UDP
ONC-RPC, using TCP

Figure 3: Doors versus standard UNIX IPC, Solaris 2.6 on Sun Ultra-1

11

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000

T
im

e
(u

s)

Message size (bytes)

Average time per request

Pipe
Door

ONC-RPC, using UDP
ONC-RPC, using TCP

Figure 4: Doors versus standard UNIX IPC, Linux 2.1.72 on Intel Pentium 100

12

8 Conclusions

The Solaris Doors API is an interesting new IPC mechanism. Its chief advantages are in
the optimizations which can be made in the kernel implementation and how it automates
the job of thread creation (in the general case) for the server programmer.

The benefits of such an interface are compelling enough to motivate the implementation
of the Doors API on operating systems platforms other than Solaris.

9 Future Work

Some features and optimizations which might be added to the Doors API for Linux follow.

• Explicitly passing shared memory objects via doors. Passing mutexes and semaphores
via shared memory would be an option, as well.

• Offering an option similar to MAP PRIVATE for the input and output arguments, i.e.
the recipient could witness changes to the source memory pages, but modifications
would cause the recipient to make a private copy of a page.

• Passing generic file descriptors via door call(3).

• Hand-off scheduling.

References

[1] Aral, Z., Bloom, J., Doeppner, T., Gertner, I., Langerman, A., and Schaffer, G., ”Vari-
able Weight Processes with Flexible Shared Resources,” Proceedings of the Winter 1989
USENIX Conference, San Diego CA, January 1989, pp. 405-412.

[2] Beck, M., et al. Linux Kernel Internals. Addison-Wesley, Nov. 1997.

[3] Becker, D., Sterling, T., Savarese, D., Dorband, J., Ranawak, U., Packer, C. BE-
OWULF: A PARALLEL WORKSTATION FOR SCIENTIFIC COMPUTATION. Pro-
ceedings, International Conference on Parallel Processing, 1995.

[4] Ridge, D., Becker, D., Merkey, P., Becker, T., Merkey, P. Beowulf: Harnessing the
Power of Parallelism in a Pile-of-PCs. Proceedings, IEEE Aerospace, 1997.

[5] Rusling, D. The Linux Kernel. Not yet published.
http://www.linuxhq.com/guides/TLK/index.html

13

[6] Voll, J. “Doors” in Solaris: Lightweight RPC using File Descriptors. Sun Developer
NEWS, Vol. 1, No. 1, Fall 1996.

[7] Sun Microsystems, Inc. Solaris Manual Pages: Library Routines. Solaris 2.6 Reference
Manual AnswerBook, 1997.

[8] Tridgell, A., Mackerras, P., Sitsky, D., Walsh, D. AP/Linux - A modern OS for the
AP1000+. Proceedings, Sixth Parallel Computing Workshop, 1996.

14

